130 research outputs found

    Improving Accented Speech Recognition with Multi-Domain Training

    Full text link
    Thanks to the rise of self-supervised learning, automatic speech recognition (ASR) systems now achieve near-human performance on a wide variety of datasets. However, they still lack generalization capability and are not robust to domain shifts like accent variations. In this work, we use speech audio representing four different French accents to create fine-tuning datasets that improve the robustness of pre-trained ASR models. By incorporating various accents in the training set, we obtain both in-domain and out-of-domain improvements. Our numerical experiments show that we can reduce error rates by up to 25% (relative) on African and Belgian accents compared to single-domain training while keeping a good performance on standard French.Comment: 5 pages, 2 figures. Accepted to ICASSP 202

    Some voices are too common: Building fair speech recognition systems using the Common Voice dataset

    Full text link
    Automatic speech recognition (ASR) systems become increasingly efficient thanks to new advances in neural network training like self-supervised learning. However, they are known to be unfair toward certain groups, for instance, people speaking with an accent. In this work, we use the French Common Voice dataset to quantify the biases of a pre-trained wav2vec~2.0 model toward several demographic groups. By fine-tuning the pre-trained model on a variety of fixed-size, carefully crafted training sets, we demonstrate the importance of speaker diversity. We also run an in-depth analysis of the Common Voice corpus and identify important shortcomings that should be taken into account by users of this dataset.Comment: 5 pages, 3 figures. Accepted to Interspeech 202

    Archimorphosis

    Get PDF
    International audienc

    ASR error management for improving spoken language understanding

    Get PDF
    This paper addresses the problem of automatic speech recognition (ASR) error detection and their use for improving spoken language understanding (SLU) systems. In this study, the SLU task consists in automatically extracting, from ASR transcriptions , semantic concepts and concept/values pairs in a e.g touristic information system. An approach is proposed for enriching the set of semantic labels with error specific labels and by using a recently proposed neural approach based on word embeddings to compute well calibrated ASR confidence measures. Experimental results are reported showing that it is possible to decrease significantly the Concept/Value Error Rate with a state of the art system, outperforming previously published results performance on the same experimental data. It also shown that combining an SLU approach based on conditional random fields with a neural encoder/decoder attention based architecture , it is possible to effectively identifying confidence islands and uncertain semantic output segments useful for deciding appropriate error handling actions by the dialogue manager strategy .Comment: Interspeech 2017, Aug 2017, Stockholm, Sweden. 201

    Impact of Encoding and Segmentation Strategies on End-to-End Simultaneous Speech Translation

    Full text link
    Boosted by the simultaneous translation shared task at IWSLT 2020, promising end-to-end online speech translation approaches were recently proposed. They consist in incrementally encoding a speech input (in a source language) and decoding the corresponding text (in a target language) with the best possible trade-off between latency and translation quality. This paper investigates two key aspects of end-to-end simultaneous speech translation: (a) how to encode efficiently the continuous speech flow, and (b) how to segment the speech flow in order to alternate optimally between reading (R: encoding input) and writing (W: decoding output) operations. We extend our previously proposed end-to-end online decoding strategy and show that while replacing BLSTM by ULSTM encoding degrades performance in offline mode, it actually improves both efficiency and performance in online mode. We also measure the impact of different methods to segment the speech signal (using fixed interval boundaries, oracle word boundaries or randomly set boundaries) and show that our best end-to-end online decoding strategy is surprisingly the one that alternates R/W operations on fixed size blocks on our English-German speech translation setup.Comment: Accepted for presentation at Interspeech 202

    Investigating Adaptation and Transfer Learning for End-to-End Spoken Language Understanding from Speech

    Get PDF
    International audienceThis work investigates speaker adaptation and transfer learning for spoken language understanding (SLU). We focus on the direct extraction of semantic tags from the audio signal using an end-to-end neural network approach. We demonstrate that the learning performance of the target predictive function for the semantic slot filling task can be substantially improved by speaker adaptation and by various knowledge transfer approaches. First, we explore speaker adaptive training (SAT) for end-to-end SLU models and propose to use zero pseudo i-vectors for more efficient model initialization and pretraining in SAT. Second, in order to improve the learning convergence for the target semantic slot filling (SF) task, models trained for different tasks, such as automatic speech recognition and named entity extraction are used to initialize neural end-to-end models trained for the target task. In addition, we explore the impact of the knowledge transfer for SLU from a speech recognition task trained in a different language. These approaches allow to develop end-to-end SLU systems in low-resource data scenarios when there is no enough in-domain semantically labeled data, but other resources, such as word transcriptions for the same or another language or named entity annotation, are available

    An Empirical Study of End-to-end Simultaneous Speech Translation Decoding Strategies

    Full text link
    This paper proposes a decoding strategy for end-to-end simultaneous speech translation. We leverage end-to-end models trained in offline mode and conduct an empirical study for two language pairs (English-to-German and English-to-Portuguese). We also investigate different output token granularities including characters and Byte Pair Encoding (BPE) units. The results show that the proposed decoding approach allows to control BLEU/Average Lagging trade-off along different latency regimes. Our best decoding settings achieve comparable results with a strong cascade model evaluated on the simultaneous translation track of IWSLT 2020 shared task.Comment: This paper has been accepted for presentation at IEEE ICASSP 202
    • …
    corecore